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ABSTRACT

Normal mode theory is applied to undamped linear elastic
structures represented as lumped parameter systems undergoing
translztional motion in three directions. The derived equations
are primarily concerned with the response of such structures
subject to applied forces and base motions and the inertia forces
required to calculate stress in each mode of vibration. Additional
relationships are presented for special types of loading and for
the effective mass acting in a given mode due to base motion.
Similar equations are summarized in aa appendix for structures
with six directions of motion, namely, three translational direc-
tions and three rotational directions subject to prescribed
assumptions.

PROBLEM STATUS
This is an interim report on one phase of the problem; work
is continuing on this and other phases.
AUTHORIZATION

NRL Problem F02-18
Project SF 013-10-01-2960 (BuShips)

Manuscript submitted September 2, 1964.
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SYMBOLS

A dot over a symbol in the text indicates differentiation with respect to time.
D:( t) Duhamel integral for base motion, direction r
Fir(t) applied force acting on m,, direction r
F. inertial force plus applied force at m, in mode a, direction r
I. impulse applied at m, direction r
M total mass of a structure
M, apparent mass in mode a, direction r
P participation factor in xﬁode a, direction r
inertia force acting on m, in the mode a, direction r
\j velocity step, direction r
absolute displacement of m, , direction r
X, relative displacement between m, and the base, direction r
X. relative displacement between =, and the base, for mode a, direction r
normal mode zhape for mode a, direction r
*  base motion, direction r
ith mass
q,(t) time function for disp;acement

t time

rs

i influence coefficient

w natural frequency of mode a for an undamped multi-degree-of-freedom system.
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NORMAL MODE THEORY FOR THREE-DIRECTIONAL MOTION

INTRODUCTION

In recent years normal mode theory has become more widely used and accepted as
a tool for structural design and analysis. While the theory has been presented for uni-
directional moticn by earlier works, including NRL reports (1-3), it was felt necessary
to extend the theory to structures undergoing translational motion in three dimensions.
While no claim is made to originality of the essential contents of the report, many steps
are included which oiten are not published in works dealing with the subject.

The prii.ary concern of th:s report is tc find the moticns and inertia forces for cal-
culating stresses of undamped linear elastic structures which are idealized as lumped
parameter systems capable of undergoing translational motion in three directions. The
derivation of the equations is deliberately limited in the use of mathematical methocs to
those which are no more complex than necessary. While this report is self-contained,
Ref. 3 is especially recomnmended as reading material to precede this report.

NOTATION

22(vERTICAL)

Figure 1 shows the orientation of |
mass . with relation to the possible
motions oi the base of the structure. The
X axes, which describe the absolute mo-
tion of a mass, are paralle! to the z
axes, associated with base motions. Note

|
I
1
that the originof the z axesisnotlocated - i - 7' (LONGITUDINAL)
i
|

N\

at a particular pcint; hence no loss of
generality is made if the 1, 2, and 3 di-

___________ v

rections refer respectively to the longi- -

tudinal, vertical, and athwartships direc- 2> (ATHWARTSHIPS)

tions of a ship. It is assumed that »_ is

a point mass with no rotational inertia Fig.l - Orientation of mass m with

and that there are n mass points repre- relation to the orientation of a ship

Senting the structure. for .[ht‘ case of threv-directional
motion

Representation of Displacements and Forces
The general rule of notation for displacements and forces is as follows:

A subsc.'ipt refers to the mass point and the superscript refers to the direction of
the displacement or force. For example, X ' represents the absolute displacement of «
in the rth direction; F° represents the force applied at m. in the s direction. Note that
1.5 - 1.2 ...n while r. <« 1. 2 3.

- W2

Rzising a Quantity to a Power

The general rule of notation for raising a quantity to a power is as follows: Always
place the quantity inside brackets before raising to the power. For example, to square
., the rule requires ( ).

S
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Summations

Unless otherwise indicated, all summations on i, j, and k are taken from 1 to n.
For example,

E = 'il .

i

All summations on a are taken from 1 to 3n. For example,

All summations on p, r, and s are taken from 1 to 3. For exumple,
3
L=1r.

r=1

All double summations are abbreviated in the following form:

L:-LL:-

n
jor «

.

1 ¢=1

!

Influence Coefficients

The influence coefficient *;; reads as follows: The deflection at i in the rth direc-
tion due to a unit force at j in the s direction. Thus, if a static force F." is applied to a
linear elastic structure which is attached to an immovable base, the deflection due to
distortion of any point j on the structure in direction r is given by the relationship

r i g rs ]
X = X/ = ZS“F..

-) " i
For applied forces at each mass point of the structure, this becomes
r rs ]
X, = i};' 5, F; - (1)

Appendix A shows the influence coefficient written out in the form to be used for
finding natural frequencies and normal mode shapes by the iteration method (4).

For linear elastic structures, Maxwell's law of reciprocal deflections (5) holds,

'LE .
namely, 813 = 851~

FREE VIBRATIONS
Normal Modes

Assume that a weightless structure attached to a fixed base is carrying a set of n
concentrated masses which are attached at the n points i. Consider its free vibrations,
that is, the possible motions in the absence of external forces. This is done by D'Alem-
bert's principle, which states that 2 system in mnotion can be considered to be in
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equilibrium at any instant if appropriate inertia forces -= X' are applied to the system.
For the case of the freely vibrating structure, simply apply these inertia forces so as to
view the structure as being in a state of equilibrium. The set of forces on the structure
is now treated as a problem of statics.

Recall that for an elastically distorted structure in equilibrium
rs L
X, = i;' S (1)
For free vibrations the only forces on the structure are the inertia forces, so
xj = - Los;imX . @

A

This is a set of 3n differential equations with constant coefficients expre;s'ng the X,'s
in terms of the X.'s. Since there is no base motion, X = x and X' fs x' Eqmtton
(2) is rewritten

x" = - _Z,' 8 % m X' )

To obtain a solution try x = x, sin (wt + B8), which is usually done for the single-
degree-of-freedom system. Then

X' = (o2 ‘;. 5 m X (4)

Equation (4) consists of three gets of n algebraic equations which are written out over
the range on r as follows:

i.‘ = (w)? 2: (8“ m.i.' + 5:: m.-x-.z'i» 8” m. _X-J)
i

J1 1 171 J1 11

_x-.z = (w)z “: (8“ m, i.l + 822 m. -X-.z + 5“ m.?s)
i

ji 1 i ) T Wi 4 I S |

X' = @ L (55 m X+ 8] m X455 X)) -

it ji i nmi

These equations can be further written out as 3n algebraic equations. Appendix A shows
these equations written in matrix form.

If 2 solution is to exist other than the trivial one where all the x 's equal zero
(static equilibrium case), it occurs only for those values of « which make the determi-
nant of the coefficients of the X;"'s equal to zero (6). This leads to an algebraic equation
of degree 3n in (w)? usually caued the frequency equation. Since undamped structures
are considered, these roots are real and pcsitive (6). These frequencies are called the
fixed base natural frequencies of the system oscillating in the absence of external forces.
For the systems where the roots of (~)? are all distinct, the rativ of amplitudes of the

masses can be found by the back substitution solution of the set of equations, which set is
defined by

x-;n = (wa) 2: 5 i my xil ' (5)
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The X;, are called the normal mode shapes and are defined by Eq. (5) for each mode a
in each direction r.

Those systems which have a pair or more of equal roots are called degenerate sys-
tems. Other techniques for solving such a set of equations treat them as an eigenvalue-
eigenvector problem, which is a characteristic value problem with latent roots. For the

degenerate systems, back substitution in Eq. (5) does not produce the set of mode shapes.

Other technigues such as matrix deflation or special forms of adjoint matrices can be
used. It is assumed that these mode shapes can be found in order to proceed.

Orthogonality of the Normal Modes

To estrablish the orthogonality of the normal mode shapes, multiply both sides of Eq.
(5) by m. X;, and sum on j and r. This gives

L] --T - T 2 r rs - S
Loomi Xy X[p = () ,Z, mXoy, 2: o X

1 t ta
’ ]

4

('3)2 Z i1t _xisa Z 5' Lilg x‘r (6)

1.s J.r 1) ] ib

X?b s (L'b)z Z sr m. ir
by Eq. (5). Equation (6) becomes

2

.. . ‘a .S ..§
Z m Xy Xja 7 (',;) Z m Xia Xip -

b 7 1.8

Since i and ; are now dummy subscripts as well as r and s,

[,<_JJ Y om X X, < 0.

bt

There are two possible cases: b - a,or b3 a. When » - a the term in the brackets
becomes zero and the summation becomes

Zn (X))

1o 1a

This is a series of positive terms which cannot be zero. When b i a, the term in the

brackets is rot zero, so that the sumivation term must be zero. This yields the orthog-
onality conditions

~ j (7)

—T —Tr N
Lo X, X - 0. aib.

(8)
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Note that these orthogonality relationships include a double summation, that i3, the
usual summation of all mass points as experienced in the unidirectional system and the
additional summation over the three possible directions of motion.

Type of Normal Mode Solution
The distortion of the structure is completely described if the set of x 's is found,

Let the time mode response at point i be x . The total response x can be found by
superposition, that is,

= Lx

At each i in each mode a there is a relative amplitude of x o« There must be a function
which converis the X!  to X} . That is, a solution will be sought in the form ’

x:u = X:l q,
so that
xir = ; _x-:| % (9)
and
iit = ; i:l al ’ (10)

If q, is found, the free vibration problem is solved.

Substitution of Eqs. (9) and (10) into Eq. (3) yields

ZX.Q.= Zsffm anaa'

LI 1

By transposition

u
o

1 18

Z( I.Z‘B m,—.+3(:aq)

and by use of Eq. (5) this becomes

NERNE
—.—)..i+q X’a:O.

Multiplication of both sides by m. X', and summation over j and r yields

ST 4a Z PR
‘—-; + q. mj X’b x’.
L (@)

it

1]
(=

There i8 only one case when the summation over j and r is not equal to zero: when
a = b. The summation over the modes is then reduced to

G + (w)?q, = 0. (11)
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This has the solution

q,(0)
Ga * q‘(c) COs Wt + » sy ot (12)
Returning to Eg. (9),
N _r Z :_, q,(0)
Xi’ - 2__‘ Xi. q,(0) cos «.t ¢ xi- - sin .t . (13)
L]

Initial Conditions

Assume that the general initial conditions at t - 0 are X.' = X,'(0) and X, - X,'(0).
Equation (13) yields

X; (0) = LT, a0). (14)
Upon differentiating Eq. (13) and introducing the initial condition on velocity, ihis yields
X, (@ = X, 4,0 (15)

The orthogonality relationship can now be used by multiplying both sides of Egs. (14) and
(15) by m; X;, and summing on i and r:

-.Z,"‘iiarb xir(o) = Z.: (0 iz.:r i ’_(:b ’—(ir'
_’;rmi i:b *:(0) = Z.-': (.].(0) i.Zr mi —x—:b i:ﬂ'
Therefore,
Jps r
L om, X, X0
q,(0) = PR (16)
i.r i (xi.)
T * T
. iz,:,"'i X;. X, (0)
G,(0) = T - (x7)

i'.Er m; (i:l)

Substitution of Eqs. (16) and (17) into Eq. (13) yields the complete normal mode solution
for free vibiations:

_.T -8 L s ¢ —98 * 8
) X; . j‘Z.m,.xj,x,. (0) X, , ,Z.mjxj.x,- (0)
X = ; cos wot + 7~ sin gt (18)
- —9
Zn; (X ws Tm(K})

& » ja

i.s 1.8
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RESPONSE TO AN APPLIED FORCE
Consider a structure which rests on an immovable base, and suppose a force F,’,
applied to m, , is time dependent but independent of structural reaction. Using D'Alem-

bert's principle and influence coefficients, the distortion of the structure is described by
the 3n equations

;= - L oimx’ e el (19)
A solution of the icrm

X; - Z Xa 9 ®
is sought. Substituting Eq. (9) into Eq. (19) yields
rx - - Z.: i,

rs —% rs b ]
~ X;a 94 L i1 ™y Xi.*gm Fy -

Transposing,
Z(qni;_+ii. rsim X ) = Z':ST.’F'.

is ji 1 Tis 89 Y3

Using Eq. (5) this may be written as

a. =T rs S
Z[(w)z+ q_] X;a = Zsjk Fy - (20)

Consider expanding the expression on the right side of Eq. (20) into a series of mode
shapes. ’.et

Zs,r = LX, Z By (21)

Multiplying both sides by m, R;b and summing on ; and r yields

‘ —r rs s P =7 _r
L (L "i Xiv 5ik>Fk - 5 o (,Z " Yiv "n)'
Using 5.0 = 5.0,
{84 s o s -T T
L(L wimTu)r = Lo, (L = s %) @)

The left side is reduced by Eq. (5), that is,

-3
‘lr ir xkb
Z “kj M b T

Por (“’b)z '

The summation over the modes in the right side of Eq. (22) reduces to simply a by virtue
of orthogonality. Thus, Eq. (22) is rewritten
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-3 s
x - o .
L - ) ) eix)

s (wa)z [ j.r

ZA: _ ;i:-Fk’
— " et L)) )

Therefore,

Equation (21) becomes

]. Z'xka Fk
2 ka 2
@ L n(%3,)

Since each component of F,: is independent, that is, the magnitudes F,’, sz , and Fk’ are
separate and independent of each other, an expansion in s on each side of the equation

leads to
(e > Yok 24
] 2
— @o? L (%)
1.p

ia

This defines the influence coefficient in terms of the normal mode properties of the
structure for translational motion in three directions.

Substituting Eq. (24) into Eq. (20) yields

_r —s s
- 63 T xja ; xkl Fk
(w,)? R ET 2
@, "7 o
(4»‘) Zp mi(x. )

Transposing,

—s s
a‘ ;xkn Fk -
EhAAC 7 [Xia = 0
* (wn)2 Z mi(i?a)
i.p

Now the orthogonality relationship is applied. Thus,

ii. Zxk‘Fk ‘ -t —r
+q_ - m. X. X., = 0.
Z ol T KR Z o
a i,p )

L ia

Therefore,
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2

G, + ()% q, = — - {25)

Equation (25) is in the form of the equation of motion for a single-degree-of-freedom
system, thus having separated each normal mode. The particular solution is written by
sight, using the Duhamel integral form for the single-degree-of-freedom system. Thus

P Z

q, - I fz xka F, (T)I sin _(t-TydT .
e ”‘/ ’

The desired solution is then

—1 t
r X; =
X, = 5 2= J [2 Ry o Fy ()] sin o (t-T)dT. (26)
— . ¥ m_{‘x? ) do T F -
s a i\"1a

i.p

If more than one force is applied at different points throughout the structure at the
same time, say d points, superposition is used to solve the problem. Since the deriva-
tion assumed the force to be applied at m, , sum the d applied forces. In this case the
particular solution is

X ‘re
X [z Ex e ] Jres—
X, Z Z T J‘ [ L L X, R J(t-T)dT @)

= o L)

To find the general solution add the compicinentary solution represented by Eq. (18)
to the particular soiution of Eqa. (26) or (27).

RESPONSE TO BASE MOTION

Suppose a structure initially at rest is attached to some base. Assume that this
undergoes a translational motion z"(t) which is a known time-deper.dent function.

Consider the equations of an elastically distorted structure:

X, = L o F
j. s

i I

Using D'Alembert's principle, this becomes

. ,;’ siom X (28)

J =)

Since x, = X," -z, Eq. (28) is written

X[ = - ,Z, vy (% 27) (29)

where X ,-r represents the components of relative acceleration. Let
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: LX

ll q.
and substitute this into Eq. (29):

LXea.=-ZL s m EX

Xiado- L 5ijm 2" (30)

Xia 9%

With use of Eq. (24), the last term of Eq. (30} can be expanded in its normal modes, that
is,

—T

-3 s

. . X.a Py Ai.i
.. m. 2 = - 0

1) ] 2 E —p 2

. (w.) i.pmj(x‘i.)

c§.s

Substituting this into Eq. (30) and rearranging terrs leads to

Lnx, 2
? R PR X; 0
+q A S o
(@ )2 a 7 is
|_ (w.)Zj;pmj(i?.)

The orthogonality conditions give

N!

Z.i

P

This equation is in the form of the equation of relative motion for a single-degree-
of-freedom system if there is a base motion and no applied force. The particular solu-
tion of Eq. (31) is

G, + (v))?q, = -

@1)

a = - 1 )’I [Z m, X 2'(1)] sin w(t -T) dT,

i 4 ‘-‘-:. . -3 -f
X, = - ? = 2J [j;. m; Xj. Z (T)] sin w{t-T) dT. (32)
E mi(X- )

r r -i:. ! —8 1K ]
Zi = Z - ? 2_” [E m X, 2 (T)] sin w (t -T) dT . (33)
r mj(i‘.’ ) o ="
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Recall that the origin of the 2 axes is not necessarily located at any particular ref-
erence point. This is due to the form by which base motions or inputs are usually pre-
scribed. The inputs may be given in one, two, or all three possible directions of motion.
For example, suppose the base disturbance is prescribed in the longitudinal direction
only. The motion of = in the vertical and athwartships directions, each of which is per-
pendicular to the longitudinal motion, represents absolute motion. This agrees with Eqgs.
(32) and (33), since each equation is the same for finding the absolute response in the
vertical and athwartships directions, while Eq. (33) gives the absolute rcsponse for longi-
tudinal motion.

SPECIAL TOPICS

Impulse

Consider the impulse 1.’ applied at mass k. The normal mode solution is

-—T -— )
. \ ' X, Z‘: Xealy
X, = 3 sin w_t
L . (%)

w X.
¢ 2 j.p VR

where Ik', I:, and I: are the amplitudes of impulse in the 1, 2, and 3 directions, re-
spectively. Upon differentiating,

- Z -x—;n;_'nlk'
X, = —-————zcos w,t . 34
L n(x3,) o0

Since the structure rests on 2 base and the masses were assumed to be capable of inde-
pendent movement, the velocity of m, must be zero at ¢ - 0, so.that

iirn E X:n Ik'
B i
—~ Z n(%.)

i.p

Suppose the impulse is applied only in the 1 direction, so that the above equation
becomes
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Likewise, if the impulse were applied in the 2 and 3 directions separately, there results

—r _2
__xia 4 -0
* J:p mj(i:')

™
»|
A |-
|
e N EL
» »
~—
[
"
[~}

Z—}E._X—L’.__:o' it k. (35)
L n(x3,)

i-p

Similarly, the velocity of the mass which is struck by the impulse applied in the 1
direction is Ikl,«’mk in the 1 direction and zero in the 2 and 3 directions att = 0. There-
fore, with reference to Eq. (34),

1 —d =l 1
}3 N xkn xka Ik
my - 2 p \2

Z o (x7,)

-2 -1 1

.>- Xy a Xug Iy 0
2
d Z mj("‘?\

xia/

s q
}.P

i:a iknlkl -0
C— 5
Z L n(T.)

a ) ja

ip

Similar equations can be obtained for the impulse applied in the 2 and 3 directions. The
resuiting equations in general form are

Z—if‘:—?——i:—a—» 0, ris (36)
— L n(X],)

J-P

i
:ﬁ' r=s. (37)

Sudden Motion of the Base

Consider the response of a structure initially at rest to a step change in the base
velocity. Let 20', z?, and zo’ comprise the components of this step change. The normal
mode solution is
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I 4 ﬁi:: Zm;x:a io’
X, = - E Do ces ot . (38)
2
<P
Z ml( i')

At ¢ - 0, the absolute velocity of each mass is zero, so that the velocity relative to the
base is -7 '. Therefore,

Similar expressions can be obtained for a step change in base velocity in the 2 and 3 di-
rections. The general equations which result are

Z i:.-’:“‘j i:a
! - 0, rts (39)

2

N

O J

1.9

= 1, r=s. (40)

Define as the participation factor

* T TR e (41)
Z;, "‘i(" )
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so that Eqs. (39) and (40) can be rewritten as
2:5(' PS:O. r:s (42)

= 1. r-s. (43)

Now sum over (43), so that

_r r
Zx. Pa = 3.

Equivalent Forces for Base Motion
As a final special topic let FL = -m, c (t), in which the foi1ce on a mass 1s propor-

tional to that mass. Assume that such forceb are applied to each mass and C'(t) is not
a function of k. Then Eq. (27) becomes

t

4 i:n Z < S s .
X,- = - —a [“.smk XkaC(T)] sin . (t-T)dT. (44)
Z mi(X. ) g

This is precisely Eq. (32), if c*T) - Z°(m. Therefore, the displacement response for
many applied forces can be converted to the relative displacement response due to base
motion by substituting F.*(T) = -m, Z°(T) and summing over all k.

INERTIA FORCES
Single Applied Force

In order to calculate for stress, it is convenient to determine the inertia loadings
that the masses apply to the structure. It has been shown that each normal mode acts as
a single-degree-of-frredom system with certain characteristics. If the absolute accel-
eration of each mass point m, is found, the inertia forces can be added to the structure
as a loading by D'Alembert’s principle.

Consider the case of an applied force at m, with no base motion. The q_, equation is

T .- S
. Lsxka Fk
G, + (v)? a, - : 5
P o
,Z_:, ml(xia)
Solving for 4,

) LXy, Fy
q, - 7 ("’“)2(]3-

L n(x;,)

). r 14
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Since
then

X
a S T\ a

. - x:az—x—:nF: - T
X; - e = (7a)? Xjp 0y (45)
Lrowy L

Rewrite Eq. (45) using Egs. (35), (36), and (37). Thus, for any mass but the kth mass
(where the force is applied)

' "'r = - Z <ua)2 -x_ira qa

and for the kth mass

=r

r
F
. T k —r
X = X = Tn; - Z ("‘a)2 Xya 9a-
]

The inertia loadings are

o
I

Lop?m X[, a,. (idk

Q
=
0"

r —r
-F ¢+ Z: (wa)z My Xya 4

These forces describe the inertial loadings for each mass point. At m, , there is an ap-
plied force F,'. The sum of the forces on m, is the net applied force

r

r T
Qk + Fk = Z.: (w-)z mk xkn 9,

The structure is therefore loaded in mode a by a force system of the form

F:‘ = (w‘)z m; )_(:. q,. for all i (46)
where
t
1 Z =9 s .
q, * Z o\ - Xya Fy (T)] sin w (t-T) dT.
w.j.pmj(x’..> 0

This force system described by Eq. (46) may be used to calculate stresses in the struc-
ture for each mode.
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Many Applied Forces

-~

Consider the case where there are many applied forces acting on a structure which

vary as different functicns of time. The §, equation is

d
kz_:‘ EX:ans
a T — . - (D%,
,Z, m,(X0.)
so that
P o d s | 3
ia kzlz:Xk“Fk .
ar . T =1 s P
xil = xil = o \2 - () ” xi. P
,2_:, m(%.)
-x—l'
S (TR DR e DR 0 R e
o) " ’ ‘
J\')a

Upon summing over the modes all terms in the series expression are zero except when

r = s and d = i, according to Eqs. (36) and (37). Therefore,

- F U
P ot _ i . 2 —T
xi = 2_, xin - ?i - ; : () xia 9y -

The inertia loadings are
Qir = -Fir + Z (wa)z m —x:a 9y -
The net force acting on each mass is

i 4 r =
Q +F; = Z(“'a)zmi Xia Q-

The structure is therefore loaded in mode a by a force system of the form

F;. = (o)? m, 5(-;, q,. for all i
where
t d
q, - 1 : J' [ r Ix:, F,f(n] sin o (t -T) dT.
v L m;(iT.) o 7T

i.p

(47)

This force system described by Eq. (47) may be used to calculate stresses in the struc-

ture for each mode in the case of many applied forces.
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Base Motion

Consider the equation of motion in one direction for a single-degrec -of-freedom
system subjecl only to base motion in that direction:

X+t ()X = -2.
The abhsolute acceleration is therefore
X - X+ 2 - -(02X.

In an analogous manner, the absolute acceleration in mode a for the type of structure
under investigation is

s

X

r
= -("’a)zxia

and the inertia forces are

where

1 _ w“
% = - — f [Z m, ), 2D)] sin st-1yat
w, Z mj(x ) 0 jos

"

- % f [Z P: 23(1')] sin v (t -T) dT (48)

by Eq. (41). Let

t

D = J ir(T) sin u?a(t -T dT . (49)
<0

Equation (48) becomes

1 s 3
A, - N2 Z Pa Da )
s

(w.,

The inertia forces in mode a, which are the net effective forces for calculating stress,
can be rewritten

Fia - Oia = om i:a Z P: D:' (50)

EFFECTIVE MASS WITH BASE MOTION

To determine the effective mass present in a given mode of vibration for a structure
subject to base motion, consider the net effective force in mode a at m, :
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r r

Flo = @, - "m X, P D). (50
The totai force acting in mode a in the r direction is
Foo- - Lm X, e 0] (51)
For the single-degree-of-freedom system this becomes
F = -MD

where & is the mass of the structure and

D - 4‘-" ZT) sin ot -T) dT.
[

Equation (51) is now expanded to give
F; 8 o Z m, i:. l".l D.l - Zmi i:. P: D: = Z m, ir F‘3 DJ. (52)

Since the components of the base motion are independent of each cther, Eq. (52) gives
the mass acting in the r direction due to motion in the s direction for mode a as

M= Lm X, P )

For example, z base motion in the longitudinal direction causes mass to act in a mode
in each direction as follows:

mass in the longitudinal direction;

mass in the vertical direction;

=
™
m
™
3
1
w
-

mass in the athwartships direction.

The latter two terms, namely M:' ana MZ', might be called the cross-mass terms.
It can be shown that

M:“ - M, , ris. (54)
If the masses are summed over the modes, there resuits

M” 8 Zmi Zi:‘ P: = Z.mi M
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using kqs. (42) and (13). h
Similar statements can be inade for base motions in the vertical and ath=artships
directions. The summation over the modes of vibration-can therefore be generalized as

M- M (55)
N =M - 0. (56)

Equation (55) indicates that the sum of all the effective masses acting in the r direc-
tion due to motion in the r direction {cr the total number of modes is equal to the total
mass of the actual structure. Since M;' is always a positive quantity, a calculation of
the amount of mass remaining in the higher modes can be made after the lower modes
have been found.

SUMMARY

The essential relationships have been derived for studying translational motion of
three-directional luniped parameter systems based on normal mode theory. The ap-
proach used to develop these expressions is an extension of an earlier report (3) on uni-
directional normal mode tt2ory. Appendix B summarizes the equations of normal mode
theory for the case of each mass having six directions of motion, that is, three transla-
tional directions and three rotational directions.
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Appendix A

MATRIX FORM OF LUMPED PARAMETER SYSTEMS

The relationship between normal mode shapes and fixed base natural frequencies is

--7 rs

X0 ? rooom X, 15)

)3
L )

The mode shapes in each of the three directions of motion are related as foilows:

G Lt Dt I
)a N .ll —1 -l! 2 .13 ;-.l

(w07 ii ™ Xiat i m™Xat LLT ™ X (A1)
a 1 1 ]

=2 =
ja 211 -1 5_‘ 22 .2 Z-‘ 13 3

TRE - Z ji ™i xia*,_,bji ilg xln* ji My Ma (AZ)
a 3 3 3

X 5 .

Aia 3 -1 32 -2 L33 =3

(w)?:.__."n‘",xia*Z‘n"‘ixi-’L..‘js"‘ixi.' (A3)
a i : H

Each of these expressions has a range of n, so that there nre a total of 3n equations
represented by Eqs. {A1)-(A3). They can be written in matrix form as

l vy v B - - . L+ e
(w)? XMy o= [P m) XY e (212 Im (XY 4 [o13) (ml XY (A4)
1 (X2} = [»21] xn 522) im] (X2} :23) X3,
((y.\’I 1x b - e J[m] {x JR [O ]lm]'[x T+ [5 ,[m] \x 9 (As)
! X3 = [§31 (%1% 5327 (m] (X2 i3 ‘X3
(—w.)z (X3 = {83 [ml{X'} + (232)(m] (X2} + [833)[m]{X3} g

where, for example,

{x"

n
<

20




Equations (A4)-(A6) can also be written in matrix form as

X"
1 | XY
(@)
(X3)
| =
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L

e

[at1] [512)

[¢21)

(522]

'll? [b)l]

fa
[

11

S
11

11
21

L
1c

[223)]

1533;

322 ce

11

:nl T

-

-J

11
“1n

This expression written out in its entirety is as follows on the next page.
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Appendix B
EQUATIONS FOR SIX-DIRECTIONAL NORMAL MODE THEORY

NOTATION AND ASSUMPTIONS

1. The structure is attached to a fixed base and is represented by n lumped masses,
each mass being capable of translational motion along three mutually perpendicular axes
and rotational motion about each of these axes.

2. Each mass has dimensions, so that it has rotational inertia.

3. Figure Bl shows the orientation of the ship by the primed coordinates (fixed axes)
and the axes of orientation for mass m, of the structure (moving axes). In addition to the
usual translational motions given by the 1, 2, and 3 axes, the 4, 5, and 6 directions repre-
sent the angular motions about each axis, respectively. Thus, X', x?, and x.* are the
components of translational motion of m,, while x;, x’, and x* are the components of
rotational motion of m,.

2' (Vertical) 3
s
) '
™
|
o A
3
|
i
Ja) 0 )
] y i e f'(L ongitudinol)
. Y
[ ‘
__________ 1%

3{Athwortships)

Fig. Bl - Reference axes for orientation
of a ship and mass m, for the case of six-
directional motion

4. For the purpcse of developing the equations of motion of a body about a fixed
point, let ¢.' = X!, ¢ = x*,and #* = x°.

5. Let I:r be the moment of inertia of m, about its r axis and Ii" be the product of
inertia of m, about its r and s axes.

6. It can be shown* that the angular momenta, H,", of a body with respect to its mov-
ing axes are

*S. Timoshenko and D.H. Young, "Advanced Dynamics,'" New York:McGraw-Hill Book
Company, Inc., p. 332, 1948,

23
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1 11 1 12 2 13 3

Hl = Ii i Ix i T I 1
2 21 -1 22 " 2 23 5

Hp = I; 5 -1 -1 7 (B1)
k] 31 1 12 2 33 3

H| = Ii i T Ii i II 1

7. Select the 1, 2, and 3 axes of m;, as the principal axes so that the products of
inertia are zero and Eq. (B1) reduces to

Hi = Ii i

2 2 2

H = I, (B2)
33 3

H' -1

8. The principie of angular momentum states that the rate of change of the angular
momentum of a body rotating about a fixed point i8 equal to the moment of all forces
acting on the body with respect to the same point. After taking into account the rate of
change of the angular momenta with respect to the 1, 2, and 3 axes and the fact that the
1, 2, and 3 axes are also rotating about a fixed point, the following equations result:

dH, 23 3 2 e

dt T Hz T Hi - NI

H 2
A 3 1 ~': 1 3 ~ 2 B3

5 - i Mo By =N (B3)
3

dHi 12 2 )

dt T Hl T Hi - NI

where N.lr is the moment of all forces acting on the body about the r axis. Substitute Eq.
(B2) into (B3) to get

1 i i
)
22 dff, 11 33y * 1 3 2
I, 'Et'— + <1i - 1, )f"i o= N (B4)

© 3
3y dvy (22 n) LI S
L gt \Li - Lo vy = Ny

These equations are called the Euler equations df motion.

10. For small oscillations assume that the terms containing the product of the ¢'s
are small compared with the other terms in Eq. {(B4), so that
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In " = '\i
22 =2 N)
II i T
33 =3 L3
L % = N

‘-4 .
1'x' - N,
1°%° - N/ (B5)
6 -6 6
1°%° = N

where, for example, 1.' is the moment of inertia of m, in the 4 direction (or about the
1 axis) and X' is the angular acceleration of m; in the 4 direction. Equations (B5) rep-
resent the reiationships between the inertia torques and the applied torques for equilib-

rium about a fixed point. These inertia torques along with the inertia forces will be used
for the free vibration problem of the structure under investigation.

11. Since the axes of each mass are the principal axes, the axes of different masses

are therefore not necessarily parallel to each other. This requires a new definition of

the influence coefficient :{} as the motion (deflection or rotation) of m; in the r direc-

tion of m; due to a unit load (force or torque) at m, in the s direction of m,. For exam-
ple, >~:: is the deflection of m, in the 1 direction of m; due to a unit force at m_ in the 1

direction of m;. Note that the 1 direction associated with r; is not necessarilyJ parallel
with the 1 direction of m; .

12. It is assumed that the change in geometry of the structure is small during its
dynamic response under the action of external forces and torques. This means that the
influence coefficients calculated for statical loads on the structure with respect to the

principal axes of each mass are used to find the dynamic motions while the axes are per-
mitted to translate and rotate with each mass.

13. Define the direction cosine between the r axis and r' axis at m, as

rre’
4 = '
i = cos (r,.r ).

Assume that during the structure's dynamic response the direction cosines remain
constant.

NORMAL MODE EQUATIONS

The equations of motion for the free vibrations of the assumed structure are written

using D'Alembert's principle and treating the inertia forces and torques as the applied
loads.
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3 6
r rs O rs 3 s
X, = - z E‘ i ™ X - z Z‘ i L X
$ rs $ S
= -L XL X r=1.....6 (B6)

where I, = m, for s =1, 2, and 3.

Equation (B6) is precisely the same as Eq. (3) except that the range on the direction
of motion includes six independent coordinates for each mass. The normal moede equa-
tions r this case are now summarized from earlier results of this report, where sum-

mations on r, s, and p are from 1 through 6 unless otherwise indicated and the summa-
tion on a is from 1 to 6n:

Mode Shapes and Natural Frequencies

& 2 Z . rs s = _ .
le T (@) = %ii I; X;a" a=1,2...., 6n. (B7’

Orthogonality of Normal Modes
L 1/ (x,) 4o (B8)

Z I X, i{b = 0, at b. (B9)

Response for Free Vibrations

] X:. Z 17X, X0 X, Z 1'%, x50
XJEE Do - cos w,t + 5 S sin w,t. (B10)
.Pf=p A p/ap \
Zl'(xja) w ZI'\x'a)

. ive !

Response to an Applied Force and Torque at m,

bl tr3 6.
X, = .5- e J [Z X,o F () + L X, Nk‘(r)] sin w,(t- T) T.  (Bl11)
Z I-p(ip ) 0 ! -

W

Response to Many Applied Forces and Torques
Assume that there are d applied forces and h applied torques; therefore,

x" 4 3 h

r x'a ' —s s hd —3 s
)y b LB B B R ] g
ia) g

Pl kr] -4
w0, Z, 17(x
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Response to Base Motion

Consider the case where translational base motion is the prescribed input referred
to the axes of the ship, namely, the primed axes shown in Fig. Bl. If each mass of the
structure is loaded with the set of forces -m, Z' , the response of each mass is the same

as for the case of many applied forces. However, this response is now the relative mo-
tion between each mass and the base.

Figure B2 shows the forces acting on m, oriented with respect to the primed refer-

ence axes. To transform these forces along the principal axes of m , use the direction

cosines between the axes r and r’ at m,. The transformed forces at m, in the r direc-
tion are

D DAL L (B13)

2' (verticat) 32

Y——_y_-—-—_.—

3'(Athwartships)

Fig. B2 - Forces acting on m, for finding
the response due to base motion for the
case of six-directional motion

Use this summation to represent the forces acting on the structure. With reference to
Eq. (B12), the relative motion between m; and the base in the r direction is therefore

X ; CE Y o
X = - 2 = j [ x: o2 g m] in o (t-T)dT.
, " : ,,_\‘ § 1 P(X?a)z ¢ ; ; s'Z:' mk ka k oLy a (Bl4)

Special Topic — Sudden Motion of the Base

Consider the response of a structure initially at rest to a step change in the trans-
lational velocity of the base. It follows from Eq. (B14) that
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3
—r 5 —s .sv' -sf
—.X’»,)_,Z oo™ X Tk 2o .
).(jr o % K os=l 1':1 — ‘815)

v

where Z, , Z. ,and Z, represent the amplitudes of the base translational velocity in
the 1', 2', and 3' directions, respectively. The six components of velocity defired by Eq.

(B15) are now treated as two separate groups, namely, the three translational components
and the three rotational components.

The translational components of velocity response are treated first. At ¢ - 0, the
absolute translational velocity of each mass is zero. To find the initial relative transla-
tional velocity of each mass with respect to the base motion, transform the base motion
into the direction oi the principal axes of each mass as foilows:

k;(O) = - Z i_;t Z; . r=1,2,3. (816)
=1’

Substitute Eq. (B16) into the left side of Eq. (B15) for ¢« = 0:

3’

3

' ' i:nL Z Z:'mk il:a i’:s Z:
Zf,;' 2! Z L M . (817)
L 1(%,)

ri=1’ [ i.p

Since the components of the base velocity are independent of each other, it follows that

3 :
-7 -8 ST

y

et 5 \ xjaZ: .2;1 ™ Xka “x

{j S : r=1,2 3. (B18)
a 2:: I:(i?a)
i.p
Let
—_8
P’ - My Xia
ka ~ —"‘Z plep \? ' (B19)
‘ Ii (xia) )
i.p
so that Eq. (B18) becomes
rr’ ! !
o ZX, L LR, r=1.2.3. (B20)
a k s=]

In the case of rotational motion, the rotation of the base is zcro, so that the initial
relative rotational velocity of each mass is also zero; that is,

X0y = X'0) = 0. r-4.56. (B21)
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Referring to Eq. (B15) at « o,

5 Y‘ d i s i s’ o5
0 x];. a— My xka 8 Zn
' S 0
; - T©  nfee \Z
0 B |

Since the components of the base velocity are independent of each other, this becomes

3 i
v’ s LY , , , ,
Z x]:‘- Z Z Pka 1 -0 r 4,5 6. s -1°.2.3 (B22)
' .1 . .

&

using Eq. (B19).

STRESS CALCULATIONS

To calculate stresses in the structure, apply the net effective forces and torques at
each mass point for each normal mode of vibration. With these loads acting in each
mode, the stresses can be calculated for each mode throughout the structure, and the
final stresses are obtained by superposing over the modes. This approach is the
same as followed earlier in the case of translational motion in three directions only.
The net effect of forces and torques for special cases are summarized as follows.

Single Applied Force and Torque at =,

F:a K {"a)zlir—;a qa (st)
where
1 ' 3 -.8 s g —s s 1
Q, - [ [Z X, F (T + X X, Nk(T)J sin < (t-T) dT.
b Ip(ip 2 “a s 1 -4
a ]..-‘p ) ]a)
Many Applied Forces (d) and Torques (h)
Fi, - (o021 X a, (B24)
where
1 . ! 2 s s h 9 @ s
Ta \z J [Z Z Xy s Firo (T) ¢ Lz X‘;a Nk(T)] sin . (t-T) dT .
p/.p s k1«1 k-1 < 4
‘a ,;p IJ (x)ﬂ/
Base Motion

Fia ! (‘n)zli x‘ixa a (st)
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where
t 3 3 . .
W — ‘p ’I [Zk: Z, Z| m 4 Koo 28 m] sin w(t-T) dT .
“£ & 1 (%.) %

EXFECTIVE MASS WITH BASE MOTION

To f:nd how much effective mass is acting in each normal mode of vibration, first
consider the effective force in mode a at =; from Eq. (B25):

r
ia Qg

F. = (w)? m; X r=1.2.3 (B26)

14

where, using Eq. (B19),

fl.=-(7,*:,—zZiZ“:"P:.D:' (B21)

in which

t

D, = w.j 2" (T) sin o (t-T) dT. (B28)

0

These fcrces are transformed to the primed axes {orientation of the ship's motion) as
follows:

' 3 ..
Flos L 4 Fia. re12.30 (B29)

ral

Substitute Eq. (B26) and (B27) into Eq. (B29). This gives

The effective force acting in mode a is

) 3 3’
Foo=-Lm L4 K, 2 L 4t el (B30)
i r=1 x

s=1 a'=1’

so that the effective mass acting in the r’ direction due to motion in the s’ direction is

A S ST B N ®s1)

The cross-mass terms are again symmetrical, that is,
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r'és’. (B32)

Consider the summation of the effective masses over the modes:
3

U N D N SR LD 3 D 2D M M

i r=1 [] & s=1

With reference to Eq. (B20) this reduces to
‘s’ 3 l’,l’ l’l'
s e YT (B33)
i r=l

It has been shown * that

Since

Eq. (B33) becomes

= 0, r'ts’. (B34)

As in the case of three-directional motion, the total mass acting over the modes in the
r' direction due to a base motion in the r’ direction equals the total mass of the struc-
ture, while the summation of the cross-mass terms equals zero.

The torques due tc translational base motion are now treated. It is necessary to
introduce new notation for the angular acceleration and the moment of inertia. In addi-
tion, matrix notation will be used in transforming the torques from the principal axes of
each mass to the ship's nrientation.

For angular acceleration, let

X, = 6, X, =6 Xi. = 6 (B35)

2ia ia"® Sis ia’ “is ~ ia’
This is necessary since direction cosines are used which refer to the 1, 2, and 3 axes
and the 1', 2', and 3' axes. Likewise, N, N, and N now represent the torques at
about the 1, 2, and 3 axes, respectively.

The direction cosines are written in matrix form as follows:

*Herbert Goldstein, "Classical Mechanics," Cambridge:Addison-Wesley, p. 98, 1950.
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S B 12 o103

T . E 20 20 33 {B36)
S I B 32 L33
- —d

When using the direction cosines for transformutions, these transformanons arc called
orthogonal transformations, and it can be shown? that

1 (B37)
and

. ) (B38)

This 1ast equation relates the irverse matrix to the transpose mutrix of the direction
ccsines.

The transformation of the toroues due to bhase translationzl motion can now be made
as follows:

N o o5 s-1.2. 3. ~ 1.2 3. (B39)

The torques referred to the unprimed axes are written in matrix form as

NTL 1Y J)
where
™ 1! n
B 0
A o 10 o | (B41)
33
o o I

Premultiply both sides of Eq. (B40) by - ., which gives

c 7 g g c s (B42)

In general, the equation for the primed system relating the torque with the inertia
terms and angular acceleration is

fRobert L. Halfman, "Dynamics,' Vol. I, Feading, Massachusetts:Addiscn-Wesley, p.
207, 1962.



NAVAL RESEARCH LABORATORY 33

NV T (B43)

Comparing terms in Eq. (B42) and (B43) and using Eq. (B38) and (B39) leads to
S A (B44)
Ch s (B45)

Equations (B43), (B44), and (B45) are now written in the equivalent series form as

)
KU S 40
s'-1’
.. 3 3 .’ g
D I SN (BAT)
IJ—.I ".’
o 3 s's - s
g - z g T3 e (B48)
s:1

Rewrite Eq. (B46) for the mode a as

)
r’ R B49
Nia 7 - Z I; “ia (B48)
s 71
or
’ 3, ' ) Y ]
r r s $ 8§ s
IR IR M (B50)
s'‘-1' s=1
where
B ELE A s.1.2.3 (B51)
3 3’
1 N ,s's s s’ r
qﬂ:_(‘ﬁL(_ 2 teln (B52)
“a kK s=1 s'=1"'

~
N

6
ia?

It should be noted that i:p, X; . and ")Zfa in Eq. (B51) are actually i:n, ‘)Zf,,, and X

respectively, due to the new notation for the transformation on the torques.
Substitute Eq. (B51) and (B52) into Eq. (B50) to get

3 3 3

Y
RS D MDD D DD I DR M (B53)

[ s 1 k r=1 p’'-1'
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Sum over all the mass points to get

3 .
Z Z: Z : ) k:a Z Z Z 'kp Pl:a D: . (B54)

From Eq. (B54) the effective moment of inertia in the r’ direction in mode 3 due to a
base translational motion in the p’ direction is

3

)’ ' 3 ,
)RR HEED IENRS D M) DENGE NS (B55)
N &

s 1 =1
Sum over the modes to get

3

¥ 3
)IED IS HEED BN JE WD I NN
' 'R 1 2 & -1

It has been shown that for rotational motion due to a sudden translational motion of the
base 3

X Z D, L - (B22)

Fl =1
sothat i' ® - o.

For the case where the principal axes of each mass are orientated parallel to the
ship's reference axes, Eq. (B55) reduces to

Elri:a a' (Bss)

Note the similarity between this equation and Eq. (53). It has heen prevxously stated that
wblle the range on r in Eq. (BS6) is 1, 2, and 3, the X, terms are in fact X}, X}, and

X; ., respectively. Therefore, Eqs. (42) and (43) which were applied to Eq. ( 53) after
summing over the modes, cannct be used with Eqg. (B56).
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